Svitlana Gorobets,

Doctor of Technical Sciences, Professor,

National Technical University of Ukraine

"Igor Sikorsky Kyiv Polytechnic Institute",

Kyiv, Ukraine

 

Liubov Kuzminykh,

Graduate Student,

National Technical University of Ukraine

"Igor Sikorsky Kyiv Polytechnic Institute",

Kyiv, Ukraine

 

 Abstract: It is known that microorganisms that contain biogenic magnetic nanoparticles are more effectively neutralized by magnetic hyperthermia. We suggest using lactic acid bacteria as model objects for experiments with magnetic hyperthermia. Using genetic analysis, it was shown that lactic acid bacteria produce biogenic magnetic nanoparticles, and therefore can be effectively neutralized by magnetic hyperthermia.

 Key words: magnetic hyperthermia, biogenic magnetic nanoparticles, neutralization, pathogenic microorganisms, model objects, lactic acid bacteria.

 

 Today, magnetic hyperthermia (MHT) has expanded the scope and is used not only for the neutralization of tumor cells, but also for the neutralization of microorganisms [1-3]. MHT is a method of neutralizing tumors or microorganisms due to an increase in temperature in the local area using an alternating magnetic field that acts on magnetic nanoparticles placed in this area. When using MHT as an auxiliary method in combination with other therapeutic methods, the effectiveness of neutralization and the healing rate increase by 2-3 times [4-6].

 It is known that the effectiveness of the neutralization of microorganisms increases significantly if they produce biogenic magnetic nanoparticles (BMNs) [1]. It is also known that different organisms have distinctive pathways of biomineralization of BMNs, depending on the production of proteins of the magnetosome island. So, according to the place of localization and the type of internal structure, BMNs are divided into 4 groups: extracellular amorphous, intracellular amorphous, extracellular crystalline, intracellular crystalline (1, 2, 3, and 4 groups, respectively) [7-8].

 24 strains of pathogenic microorganisms were analyzed using the bioinformation method to further neutralize MHT. According to the results of the analysis, 3 strains of microorganisms can be neutralized with MHT using the BMNs of the bacteria themselves as magnetic material for MHT: Streptococcus sanguinis SK115, Streptococcus pneumoniae 845, S. pneumoniae 2070335. 20 strains can be neutralized with MHT using additional artificial magnetic labeling, which include the following microorganisms: : S. aureus subsp. aureus 6850, S. aureus subsp. aureus ED133, S. aureus NCTC 8325, S. aureus subsp. aureus ST72, S. aureus subsp. aureus EMRSA16, S. aureus SCOA6009, S. aureus M81493, S. aureus 880, S. aureus subsp. aureus 21269, S. aureus subsp. aureus CO-98, S. aureus A8819, P. fluorescens NCIMB 11764, P. fluorescens ABAC62, P. fluorescens BBc6R8, Bacillus cereus G9241, Shigella dysenteriae 1617, Shigella flexneri 2a, S. flexneri 2a str. 2457T, Clostridioides difficile CD196, Peptostreptococcus sp. MV1, Peptostreptococcus sp. D1 [9].

 Since pathogenic microorganisms are not always advisable to use for research, strains of non-pathogenic bacteria or human symbionts can be used as model samples. Such microorganisms can be non-pathogenic strains of E. coli, lactic acid bacteria (LAB), agrobacteria, etc. Thus, 15 different probiotic preparations were analyzed and bio-informational analysis of microorganisms was carried out for the presence of mechanisms of biomineralization of BMNs, as well as the location and type of internal structure of BMNs [7]. Most often, the probiotics that are on the market include the following types of lactic acid bacteria: Streptococcus salivarius, S. thermophilus, Bifidobacterium lactis, B. animalis subsp. lactis, B. animalis, B. animalis subsp. lactis, B. bifidum, B. breve, Lactobacillus rhamnosus, L. acidophilus, L. delbrueckii subsp. bulgaricus, L. paracasei, L. casei, L. bulgaricus.

 The results of alignment of BMNs biomineralization proteins of 13 strains of LAB that are part of probiotic preparations with proteins of biomineralization magnetotactic bacteria (MTB) Magnetospirillum gryphiswaldense MSR-1 are presented in table 1.

Table 1.

Comparison of Mam MTB proteins of the Magnetospirillum gryphiswaldense MSR-1 group and proteomes of LAB 

Name of the bacterium, strain

E-number (І, %)

Proteins of Magnetospirillum gryphiswaldense MSR-1

mamA

mamB

mamM

mamO

mamE

mamK

L. rhamnosus

0.23

34.69%

1e-15

25.28%

8e-18

25.19%

3e-06

25.43%

5e-27

38.19%

6e-15

28.53%

L. acidophilus NCTC13720

0.006

27.61%

1e-11

24.32%

3e-15

25.17%

3e-09

28.74%

-

2e-16 27.78%

S. salivarius

0.055

26.23%

8e-29 28.84%

3e-25 25.68%

0.001 26.04%

1e-26

41.71%

0.11

24.86%

S. thermophiles

0.23

27.27%

4e-20

26.46%

4e-23

27.96%

1e-05

25.45%

1e-27

42.61%

0.079

27.07%

S. thermophilus TH1477

0.42

27.27%

8e-21

26.46%

2e-23

27.56%

4e-04

25.44%

6e-29

42.61%

0.015

25.82%

L. bulgaricus

ATCC 11842 = JCM 1002

0.007

27.14%

5e-09

23.41%

4e-11 23.95%

6e-08 25.44%

9e-22

40.59%

2e-18

27.86%

B. animalis subsp. lactis ATCC 27673

1.5 29.66%

5e-04

27.38%

0.001

26.98%

1e-07

31.51%

2e-26

41.62%

8.8

28.00%

B. animalis subsp. lactis AD011

1.2

30.30%

5e-04

28.77%

0.001

26.98%

2e-07 0.82%  

3e-26

41.08%

0.67

27.18%

B. animalis BB-12

1.4

26.12%

0.002

28.77%

0.001

26.98%

2e-07

30.82%

3e-26

41.08%

0.65

27.18%

B. animalis BL-4

1.6

28.36%

12

47.62%

6.4

20.43%

54

58.82%

21

34.67%

9.8

24.46%

L. paracasei subsp. paracasei Lpp37

0.19

23.47%

1e-15

23.79%

9e-17

25.20%

7e-06

27.33%

1e-25

42.37%

3e-17

29.91%

B. animalis subsp. lactis Bi-07

0.22

30.30%

9e-05

28.77%

2e-04

26.98%

3e-08

30.82%

5e-27

41.08%

0.12

27.18%

L. acidophilus NCFM

0.009

23.68%

3e-08

23.28%

4e-11

23.08%

3e-06

25.00%

9e-24

41.14    

5e-17

28.09%

  

 Note to the table: all significant alignment results are highlighted in bold.

 According to the results, which are presented in table 1, 13 strains of LAB were analyzed:

 7 strains - 1 group (extracellular amorphous): S. salivarius, S. thermophilus, S. thermophilus TH1477, B. animalis subsp. lactis ATCC 2767, B. animalis subsp. lactis AD011, B. animalis BB-12, B. animalis subsp. lactis bi-07.

 3 strains - group 2 (intracellular amorphous): L. rhamnosus, L. delbrueckii subsp. bulgaricus ATCC 11842 = JCM 1002, L. paracasei subsp. paracasei Lpp37.

 0 strains - 3 group (extracellular crystalline).

 2 strains - group 4 (intracellular crystalline): Lactobacillus acidophilus NCTC13720, Lactobacillus acidophilus NCFM.

 1 strain - is not a producer of BMNs: Bifidobacterium animalis BL-4.

 Thus, among LAB, existing producers and potential producers of BMNs, which allows them to be used as model objects for MHT.

 

References

1. Chen C. Chen L., Yi Y. Killing of Staphylococcus aureus via magnetic hyperthermia mediated by magnetotactic bacteria. Applied and Environmental Microbiology, 2016. V. 82. № 7 (04). Р. 2219–2226.

2. Bañobre-López M., Rodrigues D., Espiña B. Control of bacterial cells growths by magnetic hyperthermia. IEEE transactions on magnetics, 2013. V. 49. № 7. Р. 3508–3511.

3. Fang C.-H., Tsai P.-I, Huang S.-W., Su J.-S. Magnetic hyperthermia enhance the treatment efficacy of peri-implant osteomyelitis. BMC Infectious Diseases, 2017. 17. Р. 516.

4. Zee, J. Heating the patient: a promising approach. Ann Oncol, 2002 Aug;13(8):1173-84.

5. Heydari M., Javidi M., Attar M. M., Karimi A., Navidbakhsh M., Haghpanahi M., Amanpour S. Magnetic fluid hyperthermia in a cylindrical gel contains water flow. Journal of Mechanics in Medicine and Biology, 2015. №05. 15500888: 1 – 16.

6. Brusentsov N.A., Komissarova L.Kh., Kuznetsov A.A. et al. Evaluation of ferrifludscontaining fotosensitizer for the AC magneticfield action to the tumor cells in vitro. // J. Eur. Cells and Materials, 2002. № 3. Supl. 2. P. 70–73.

7. Gorobets O. Yu., Gorobets S.V., Sorokina L.V. Biomineralization and synthesis of biogenic magnetic nanoparticles and magnetosensitive in clusions in microorganisms and fangi. Functional Materials, 2014. № 21 (4). Р. 427-436.

8. Gorobets O. Yu., Gorobets S. V., Gorobets Yu. I. Biogenic magnetic nanoparticles: Biomineralization in prokaryotes and eukaryotes. Dekker Encyclopedia of Nanoscience and Nanotechnology, Third Edition. CRC Press: New York, 2014. Р. 300-308.

9. Gorobets S., Gorobets O., Kovalyov O., Hetmanenko K., Kovalyova S. Examining the properties of dry magnetically controlled biosorbent, obtained by the method of mechanical and magneto-hydrodynamic agitation. Eastern-European Jornal of Enterprise Technologies. 2016. №6/10 (84). Р. 57–63.